Course Name: Applied Ground-Water Flow Modelling

Course Number:

Credit:

3

Course Content (outline):

- Introduction

- The purpose of modelling
- The proper use of models
- Constructing a Numerical Model
- Numerical methods for groundwater models
- Governing Equations
 - Darcy's Eq.
 - General GW continuity Eq.
 - Transport Eq.
- The Finite Difference Method
 - Approximation of the derivative
 - Solution of the Flow Eq.
 - Transient Flow
 - The Alternating direction technique
 - Block-Centered finite differences
 - Stability
- The Finite Element Method
 - Basic Principles
 - Galerkin Method
 - Solution of the Flow Eq.
 - Anisotropy and Heterogeneity
 - Comparison with finite difference method
 - Confined/Unconfined aquifers
- Solution of the transport Eq.
 - Advection processes
 - Diffusion and dispersion processes
 - Mass transport equation,
 - FDM and FEM for Solution of the transport Eq.
 - Numerical dispersion
 - Particle tracking methods
- Model Applications
 - Model application process
 - Defining Goals
 - Building a flow and contaminant transport model
 - Model input parameters

- Model Calibration and Sensitivity Analysis
 - Basic concepts of model calibration
 - Assessment of model calibration
 - Calibration by trial and error
 - Automated calibration
 - Sensitivity analysis
- Dealing with uncertainty
 - Types and sources of uncertainty
 - Methods of evaluating uncertainty
 - Managing uncertainty
- Case studies

References:

- "Applied Groundwater Modeling: Simulation of Flow and Advective Transport", M. Anderson et al., 2nd Ed., 2015.
- "Groundwater Contamination", P.B. Bedient et al., 1999.
- "Applied Hydrogeology", C.W. Fetter, 1988.
- "Contaminant Hydrogeology", C.W. Fetter, 1993.
- "Modeling Groundwater Flow and Contaminant Transport", J. Bear & H. D. Ch. Alexander, 2010.
- "Groundwater hydrology", D.K. Todd, 1980.