Course Name: Structural Optimization

Course Number: 20195

Credit:

3

Course Content (outline):

1. Introduction

Basic Concepts Mathematical Formulation of Optimization Problems Design Variables, Classification of Constraints and Feasible Domain Linear and Nonlinear Programming Problems Optimization Techniques- Classical Tools (Optimality Test) and Mathematical Programming Methods

2. Linear Programming

Definitions, Applications and Graphical Solution of LP Problems The Simplex Method, the Canonical Form, Pivot Operations Generating a Basic Feasible Solution Duality in Linear Programming

3. Unconstrained Optimization

Local and Global Minimum Value

Univariate Search Technique

Minimization of Functions of Several Variables- Zeroth Order Methods (Powell's Conjugate Directions), Gradient Method (Steepest Descent Method), Newton's Method and Quasi-Newton Algorithms

4. Constrained Optimization

Lagrange Multiplier Method

The Kuhn-Tucker Conditions for Optimality Convex Programming Quadratic Programming Computing the Lagrange Multipliers Gradient Projection Method Feasible Directions Method Interior and Exterior Penalty Functions Methods

5. Sequential Approximate Optimization

Linearizing Constraints and Objective Function The Linear and Reciprocal Approximations Sequential Linear Programming Sequential Quadratic Programming Sensitivity Analysis, the Direct and Adjoint Methods

6. Aspects of The Optimization Process in Practice

Optimization of Cross-Section Area Shape Optimization Topological Optimization

References:

- Kirsh, Uri. Optimal Structural Design, MacGraw-Hill, 1981.
- Haftka, Raphael T. and Gurdal, Zafer. Elements of Structural Optimization, Kluwer Academic Publishers, 1992.
- Christensen, Peter W. and Klarbring, Anders. An Introduction to Structural Optimization, Springer, 2009.